

### **Authors**

Hassan El Hariri Affirmed Networks **David Bastiani** Affirmed Networks Sarita Maini **Intel Corporation** Shivapriya Hiremath **Intel Corporation** Veera Gurijala **Intel Corporation** 

## **Key Contributors**

#### John M Morgan

**Intel Corporation** 

#### Phil To

Affirmed Networks

#### 1 Introduction

A virtualized Evolved Packet Core (vEPC) enables Communication Service Providers to reduce cost by moving core network components of the Long-Term Evolution (LTE) network from high-cost dedicated hardware to low-cost commercial off-the-shelf (COTS) servers. This document illustrates the high performance of the Affirmed Networks virtualized Evolved Packet Core (vEPC) solution on 2nd Generation Intel® Xeon® Platinum 8280L processors (formerly codenamed Cascade Lake). The test results achieved a throughput of up to 168 Gbps and a packet rate of up to 29 Mpps on dual-socket servers powered by these Intel® Xeon® Platinum 8280L processors, using Intel® XXV710 25G NICs.

The test environment utilized Red Hat\* OpenStack\* Platform (RH\* OSP\*) version10 (Newton) and the Spirent Landslide\* physical traffic generator, as a standardized framework for testing and characterizing the performance of the Affirmed vEPC virtual network function (VNF) in an NFVI environment.

Intel® Xeon® Scalable processors incorporate unique features for virtualized network workloads, leading to impressive performance gains compared to systems based on prior Intel processor generations. The increased performance of Intel Xeon Scalable processors can significantly improve the capability for software-centric, carrier-grade virtualization which aids communications service providers in attaining and enforcing service level agreements and increasingly demanding quality of service requirements.

Affirmed Networks\* delivers a fully virtualized mobile core solutions supporting both vEPC and Next Generation 5G Core. Affirmed Network's solution enables operators to economically scale networks and deliver differentiated services tailored to specific use cases covering:

- Consumer
- Enhanced Mobile Broadband (eMBB)
- Internet of Things (IoT)
- Mobile Network Operator (MNO)
- Mobile Virtual Network Operator (MVNO)

functions, including:

- Mobility Management Entity/Serving GPRS Support Node (MME/SGSN)
- Serving Gateway (SGW)
- Gateway GPRS Support Node/Packet Data Network Gateway (GGSN/PGW)
- Evolved Packet Data Gateway (ePDG)
- Trusted Wireless Access Gateway (TWAG)

Affirmed Networks' solution capabilities include:

- 5G Core
- Control & User Plane Separation (CUPS)
- Network Slicing
- Integrated virtual probes
- Optimized IoT access (NB-IoT/LTE-M/SCEF)

- Mobile Virtual Network Enabler (MVNE)
- Private Long-Term Evolution (LTE)
- WiFi\*
- GiLAN
- Voice over LTE (VoLTE) to Fixed Wireless

Affirmed Networks' vEPC provides high performance, scalable, cost-effective vEPC

- CIoT Serving Gateway Node (CSGN) -Narrow-Band IoT (NB-IoT)
- Policy and Charging Rules Function (PCRF)
- · Authentication, Authorization, and Accounting (AAA)
- Home Subscriber Server (HSS)
- Virtualized Deep Packet Inspection (DPI)
- Service automation (Affirmed Service Automation Platform)
- WiFi
- GiLAN and analytics services

## **Table of Contents**

| 1 |                   | Introduction                                                                                                                                                                                                        | 1                             |
|---|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|   | 1.1               | Intended Audience                                                                                                                                                                                                   | 3                             |
|   | 1.2               | Terminology                                                                                                                                                                                                         | 3                             |
|   | 1.3               | Reference Document                                                                                                                                                                                                  |                               |
| 2 |                   | Document Overview                                                                                                                                                                                                   | 5                             |
|   | 2.1               | Red Hat* Enterprise Linux* and Red Hat* OpenStack* Platform v10 (Newton*)                                                                                                                                           | 5                             |
|   | 2.2               | Affirmed Networks* 5G vEPC                                                                                                                                                                                          | 5                             |
|   | 2.3               | Spirent Landslide*                                                                                                                                                                                                  | 6                             |
| 3 |                   | Hardware and Software Components                                                                                                                                                                                    | 6                             |
|   | 3.1               | Intel® Xeon® Scalable Processors                                                                                                                                                                                    | 6                             |
|   | 3.2               | Hardware Components                                                                                                                                                                                                 |                               |
|   | 3.3               | Software Components                                                                                                                                                                                                 | 7                             |
|   | 5.5               | Software components                                                                                                                                                                                                 | /                             |
| 4 | 5.5               | OpenStack Nodes and Network Topology                                                                                                                                                                                | 8                             |
| 4 | 5.5<br>4.1        | OpenStack Nodes and Network Topology                                                                                                                                                                                | 8                             |
| 4 |                   | OpenStack Nodes and Network Topology                                                                                                                                                                                | 8                             |
| 4 | 4.1               | OpenStack Nodes and Network Topology<br>External/Provisioning Network<br>Intelligent Platform Management Interface (IPMI)                                                                                           | <b> 8</b><br>9<br>9           |
| 4 | 4.1<br>4.2        | OpenStack Nodes and Network Topology                                                                                                                                                                                | <b> 8</b><br>9<br>9<br>9      |
| 4 | 4.1<br>4.2<br>4.3 | OpenStack Nodes and Network Topology<br>External/Provisioning Network<br>Intelligent Platform Management Interface (IPMI)<br>Management Network                                                                     | <b> 8</b><br>9<br>9<br>9<br>9 |
| - | 4.1<br>4.2<br>4.3 | OpenStack Nodes and Network Topology<br>External/Provisioning Network<br>Intelligent Platform Management Interface (IPMI)<br>Management Network<br>Data Network                                                     | 9<br>9<br>9<br>9<br>9<br>10   |
| 5 | 4.1<br>4.2<br>4.3 | OpenStack Nodes and Network Topology<br>External/Provisioning Network<br>Intelligent Platform Management Interface (IPMI)<br>Management Network<br>Data Network<br>Affirmed Networks* vEPC Deployment on OpenStack* | 9<br>9<br>9<br>9<br>10<br>10  |

## **Figures**

| Figure 1. | Spirent Physical Landslide GUI | .6  |
|-----------|--------------------------------|-----|
| Figure 2. | OpenStack Components           | . 8 |
| Figure 3. | Network Topology Details       | . 9 |

## Tables

| Table 1. | Terminology                                                | . 3 |
|----------|------------------------------------------------------------|-----|
| Table 2. | Reference Document                                         | . 5 |
|          | Hardware Components                                        | . 7 |
|          | Software Components                                        | . 7 |
|          | Intel® Xeon® Platinum 8280L – Core Allocation for vEPC VMs | 10  |
| Table 6. | BIOS Settings                                              | 11  |

### **1.1 Intended Audience**

This white paper is intended for communication service providers who are planning and deploying virtualized mobile core infrastructure running on the latest Intel<sup>®</sup> Xeon<sup>®</sup> Scalable Processors.

### 1.2 Terminology

### Table 1. Terminology

| ABBREVIATION | DESCRIPTION                                   |  |  |  |
|--------------|-----------------------------------------------|--|--|--|
| AAA          | Authentication, Authorization, and Accounting |  |  |  |
| BIOS         | Basic Input / Output System                   |  |  |  |
| ВМС          | Baseboard Management Controller               |  |  |  |
| CIDR         | Classless Inter-Domain Routing                |  |  |  |
| CloT         | Consumer Internet of Things                   |  |  |  |
| CLI          | Command Line Interface                        |  |  |  |
| CoSP         | Communications Service Provider               |  |  |  |
| CSGN         | CloT Serving Gateway Node                     |  |  |  |
| CSM          | Content Services Module                       |  |  |  |
| DHCP         | Dynamic Host Configuration Protocol           |  |  |  |
| DNS          | Domain Name System                            |  |  |  |
| DPI          | Deep Packet Inspection                        |  |  |  |
| ePDG         | Evolved Packet Data Gateway                   |  |  |  |
| GGSN         | Gateway GPRS Support Node                     |  |  |  |
| GPRS         | General Packet Radio Services                 |  |  |  |
| GUI          | Graphic User Interface                        |  |  |  |
| GW           | Gateway                                       |  |  |  |
| HSS          | Home Subscriber Server                        |  |  |  |
| loT          | Internet of Things                            |  |  |  |
| IP           | Internet Protocol                             |  |  |  |
| IPMI         | Intelligent Platform Management Interface     |  |  |  |
| LTE          | Long-Term Evolution                           |  |  |  |
| MAC          | Media Access Control                          |  |  |  |
| MCC*         | Mobile Content Cloud*                         |  |  |  |
| МСМ          | Management Control Module                     |  |  |  |
| MME          | Mobility Management Entity                    |  |  |  |
| MNO          | Mobile Network Operator                       |  |  |  |
| MVNE         | Mobile Virtual Network Enabler                |  |  |  |
| MVNO         | Mobile Virtual Network Operator               |  |  |  |

| ABBREVIATION | DESCRIPTION                                     |
|--------------|-------------------------------------------------|
| NB-IoT       | Narrow-Band IoT                                 |
| NFV          | Network Functions Virtualization                |
| NFVI         | Network Functions Virtualization Infrastructure |
| NG Core      | Next-Generation Core                            |
| NIC          | Network Interface Card                          |
| NR           | New Radio                                       |
| NUMA         | Non-Uniform Memory Access                       |
| OS           | Operating System                                |
| OSP          | Open Stack Platform                             |
| OVS          | Open vSwitch                                    |
| PCI          | Peripheral Component Interconnect               |
| PCRF         | Policy and Charging Rules Function              |
| PGW          | Packet Data Network Gateway                     |
| PXE          | Preboot eXecution Environment                   |
| RHEL         | Red Hat Enterprise Linux                        |
| SAEGW        | System Architecture Evolution Gateway           |
| SCEF         | Service Capability Exposure Functions           |
| SGSN         | Serving GPRS Support Node                       |
| SGW          | Serving Gateway                                 |
| SR-IOV       | Single-Root Input / Output Virtualization       |
| SSM          | Subscriber Services Module                      |
| TWAG         | Trusted Wireless Access Gateway                 |
| UE           | User Equipment                                  |
| UUID         | Universally Unique Identifier                   |
| VEPC         | Virtual Evolved Packet Core                     |
| VLAN         | Virtual Local Area Network                      |
| VM           | Virtual Machine                                 |
| VMM          | Virtual Machine Manager                         |
| VNF          | Virtual Network Function                        |
| VoLTE        | Voice over LTE                                  |
| VxLAN        | Virtual extensible LAN                          |

### **1.3 Reference Document**

#### Table 2.Reference Document

| REFERENCE                                            | SOURCE                                                             |
|------------------------------------------------------|--------------------------------------------------------------------|
| Affirmed Mobile Core* Tests Demonstrate Scalability, | https://www.affirmednetworks.com/wp_                               |
| Performance for 5G Networks                          | content/uploads/2018/06/Affirmed_Intel_vEPC_performance_report.pdf |

## 2 Document Overview

This document showcases the benchmarks of Affirmed Networks vEPC using Red Hat OpenStack on 2nd Generation Intel® Xeon® Scalable processors (codename Cascade Lake - SP). It demonstrates an enhanced IO throughput of up to 168 Gbps and a packet rate of up to 29 Mpps with 28-core Intel® Xeon® Platinum 8280L @ 2.7GHz, in the control plane as well as user plane servers, using Intel® XXV710 25G NICs.

The test environment consisted of four servers powered with Intel Xeon Platinum 8280L processors, with the Red Hat\* Enterprise Linux\* (RHEL\*) operating system v7.6 and the Red Hat\* OpenStack\* Platform 10 (Newton\*) installed on three bare-metal servers, and a virtual machine (VM) on the fourth server. These servers were configured as an OpenStack\* Director VM, an OpenStack Controller Node host, and two OpenStack Compute Node host servers. A physical Spirent Landslide\* was used as the traffic generator, and for emulating LTE network components needed for testing vEPC.

The tested Affirmed Networks vEPC solution implemented a virtualized Serving Gateway (SGW) and Packet Data Network Gateway (PGW). The serving gateway is a critical network function for the LTE mobile core network. The SGW acts as a mobility anchor point and routes data between the eNodeB base station and the PDN gateway. It receives instruction from the Mobility Management Entity (MME) to setup/teardown sessions for UEs (User Equipment). One or more SGWs serve a group of eNodeB's for user plane data. The SGW handles user IP packets between the PGW and eNodeB. The PGW provides external access to Packet Data Networks (PDNs). If the UE has multiple data sessions it can be connected to multiple PDNs. The PGW is responsible for allocating IP-address for the UE as well as the quality-of-service (QoS) and bandwidth parameters for the subscriber session, based on the carrier policy. A combined SGW & PGW is referred to as a System Architecture Evolution Gateway (SAE-GW). Figure 1 shows all the components that are a part of this test setup.

### 2.1 Red Hat\* Enterprise Linux\* and Red Hat\* OpenStack\* Platform v10 (Newton\*)

Red Hat\* Enterprise Linux\* (RHEL\*) is a commercial distribution of the Linux\* operating system (OS). It provides support for platforms to run varied workloads in physical, virtualized, and cloud environments.

Red Hat\* OpenStack\* Platform (RH OSP\*) is a commercial distribution of the open source project of OpenStack\* to deploy easily manageable and configurable pools of compute, storage, and network resources in public and private clouds. RH OSP was installed on RHEL.

Some important OpenStack services that are available within RH OSP are:

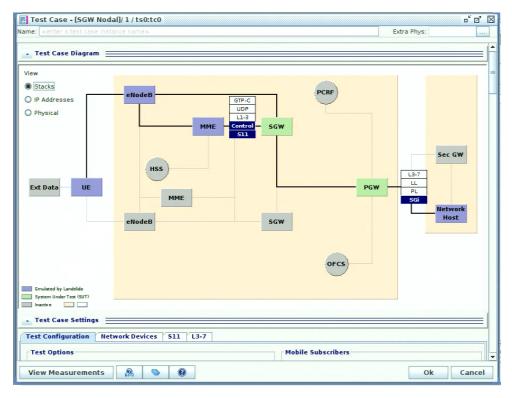
- Nova service compute
- Neutron network
- Swift object storage
- Cinder block storage
- Ironic bare metal provisioning
- Heat orchestration
- Keystone identity management.

RH OSP uses the OSP director to install, upgrade, and manage the cloud. It uses the concept of Overcloud and Undercloud based on TripleO\*. The Undercloud is the main director node from where the user can provision and control the Overcloud nodes. The Overcloud is the cluster of nodes performing the roles of controller, compute, and storage that a user creates through the OSP director's Undercloud.

### 2.2 Affirmed Networks\* 5G vEPC

Affirmed Networks\* virtualized 5G Evolved Packet Core (5G vEPC) provides the software running on multiple virtual machines (VMs) that are spawned on commercial off-the-shelf high-volume servers based on Intel® Architecture.

In this document, the main services tested in the vEPC are the Serving Gateway (SGW) and Packet Data Network Gateway (PGW), which are both based on the <u>3rd Generation Partnership Project</u> (3GPP) standards.


The SGW is the point of interconnect between the radio-side and the vEPC. This gateway serves the User Equipment (UE) by routing incoming and outgoing packets. The SGW is logically connected to the PGW. The PGW is the point of interconnect between the vEPC and the external IP networks. The PGW routes the packets to and from the packet data network. The SAEGW's user-plane and control-plane VMs were hosted on distinct servers.

For more information, refer to <u>Affirmed Mobile Core\* Tests Demonstrate Scalability</u>, <u>Performance for 5G Networks</u>, a white paper test report of an Affirmed Networks<sup>®</sup> vEPC solution that shows the line rate performance with linear performance scaling in a given test case on servers powered by the previous generation of Intel<sup>®</sup> Xeon<sup>®</sup> Scalable processors.

## 2.3 Spirent Landslide\*

Spirent Landslide\* emulates the control and data traffic of mobile subscribers moving through the network while using carrier services. Spirent Landslide's unique testing methods combine sets of node emulators and end-to-end test cases to offer service providers and equipment vendors a fully controlled test environment to validate system scalability and identify capacity limit. It can be used for measuring control plane capacity and stressing data plane performance, as well as for characterizing system performance and identifying performance ceilings. A graphical interface can be used to set up and execute test sessions, monitor progress, and test results.

Spirent Landslide was used to perform end-to-end network validation of vEPC. It emulated UEs, eNodeB, MME and the Network Host which are the nodes in the LTE network as shown in <u>Figure 1</u> in blue. The nodes in green were a part of Affirmed Networks vEPC implementation of PGW and SGW, running on OpenStack compute nodes with Intel<sup>®</sup> Xeon<sup>®</sup> processors.



#### Figure 1. Spirent Physical Landslide GUI

## 3 Hardware and Software Components

This section details the hardware and software components used for this project.

### 3.1 Intel<sup>®</sup> Xeon<sup>®</sup> Scalable Processors

This document shows the high performance of the Intel<sup>®</sup> Xeon<sup>®</sup> Platinum 8280L processors. The Intel<sup>®</sup> Xeon<sup>®</sup> Scalable Processor family has architectural enhancements in the processor and CPU cores, higher core counts, larger L2 caches, larger capacity memory, increased numbers of PCIe<sup>\*</sup> lanes, higher memory bandwidth, higher I/O bandwidth, and higher inter-socket bandwidth, compared to previous Intel<sup>®</sup> Xeon<sup>®</sup> processors. Hardware and Software components are listed in <u>Table 3</u> and <u>Table 4</u>.

#### 3.2 Hardware Components

## Table 3. Hardware Components

| СРИ                                                                                            | INTEL <sup>®</sup> XEON <sup>®</sup> PLATINUM 8280L PROCESSOR<br>(FORMERLY CODENAMED CASCADE LAKE-SP)                                                                                       |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of Physical Cores per CPU                                                               | 28                                                                                                                                                                                          |
| Number of Logical Processor Cores per CPU                                                      | 56                                                                                                                                                                                          |
| Number of CPUs                                                                                 | 2                                                                                                                                                                                           |
| Total Number of Logical Cores with Intel® Hyper-Threading<br>Technology (Intel® HT Technology) | 112                                                                                                                                                                                         |
| Processor Base Frequency                                                                       | 2.7 GHz                                                                                                                                                                                     |
| Memory Type/ Maximum Memory Speed/Memory Size                                                  | RDIMM, DDR4 @ 2933 MHz                                                                                                                                                                      |
|                                                                                                | 384 GB                                                                                                                                                                                      |
| Number of Memory Channels                                                                      | 6                                                                                                                                                                                           |
| Number of PCI Express Lanes                                                                    | 48 lanes per CPU                                                                                                                                                                            |
| Ethernet Switch                                                                                | Arista 7280QR C-36                                                                                                                                                                          |
| Data Network NICs                                                                              | 8x 25GbE ports in 4 Intel® Ethernet Controller XXV710 for NICs (2 ports per NIC) in each server, NUMA aligned with PCIe IO devices in the same NUMA nodes as the cores using the IO devices |
| OS Drive                                                                                       | Intel® SSD DC S4600 Series (960GB, 2.5in SATA 6Gb/s, 3D1, TLC) -<br>SSDSC2KG960G7L                                                                                                          |

## 3.3 Software Components

#### Table 4. Software Components

| ІТЕМ              | SOFTWARE VERSION                        |
|-------------------|-----------------------------------------|
| Host OS           | Red Hat Enterprise Linux v7.6           |
| OpenStack         | Red Hat OpenStack Platform v10 (Newton) |
| vEPC VNF          | Affirmed Networks MCC Rel. 9.1.1.0-145  |
| Traffic Generator | Spirent physical Landslide 17.4.0       |

## 4 OpenStack Nodes and Network Topology

The Red Hat\* OpenStack\* Platform setup has four Intel<sup>®</sup> Xeon<sup>®</sup> based servers. They are used as OpenStack\* nodes; one OpenStack Platform Director Host system, one OpenStack Controller node, and two OpenStack Compute nodes.

The Spirent Landslide physical traffic generator was used to send traffic to the vEPC VNF on the Compute nodes in an OpenStack environment connected on the same data network via the Intel<sup>®</sup> Ethernet Network adapter XXV710 25 GbE NICs. These are low power, standard volume NICs.

Figure 2 and Figure 3 present the Red Hat OSP platform and network setup.

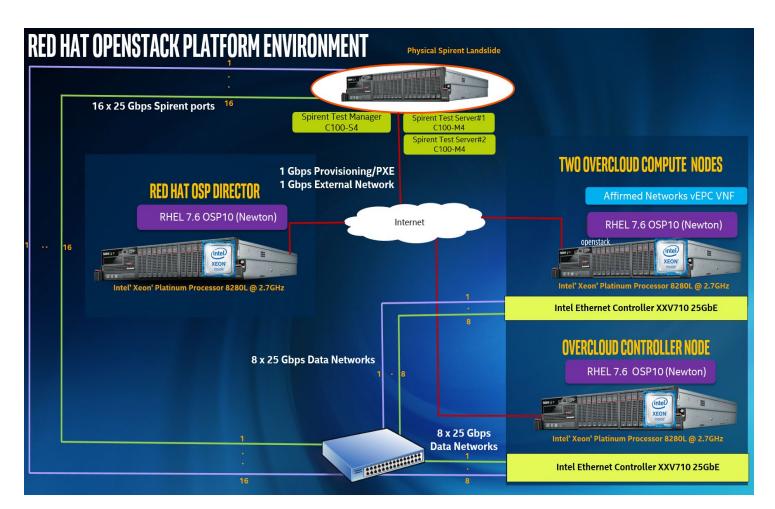
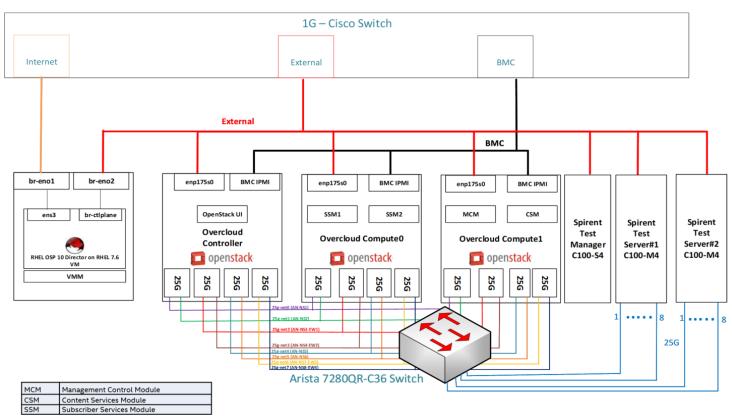




Figure 2. OpenStack Components



#### Figure 3. Network Topology Details

The OpenStack network topology in Figure 3 includes the following networks:

- One 1 Gbps External network
- One 1 Gbps PXE/Provisioning network
- One 10 Gbps Management network, with one Intel® Ethernet Converged Network Adapter X710 10 GbE NIC
- 4 x 25 Gbps East-West networks, using two ports of two Intel® Ethernet Network Adapter XXV710 25 GbE NIC
- 8 x 25 Gbps North-South networks, using two ports of four Intel® Ethernet Network Adapter XXV710 25 GbE NICs

#### 4.1 External/Provisioning Network

The external network was used for Internet access from the controller and compute nodes. The role of the provisioning network was to allow the OSP director to deploy the Overcloud nodes, including the Intelligent Platform Management Interface (IPMI) and iPXE and communicate with them. Each Overcloud node had one static IP address reserved for IPMI access.

#### 4.2 Intelligent Platform Management Interface (IPMI)

All Overcloud bare metal systems had an Intelligent Platform Management Interface (IPMI), used by the OSP Director to control power management when using its Ironic service.

#### 4.3 Management Network

The management network was used to manage OpenStack services and instances.

#### 4.4 Data Network

The Data network was composed of the four 25 GbE links used for the East-West traffic between the vEPC VMs within the OpenStack environment and eight 25 GbE links for the North-South traffic between the Spirent Landslide physical Test Servers and the two vEPC data plane Virtual Machines called Subscriber Services Module (SSM). Refer to <u>Section 5, Affirmed Networks\* vEPC Deployment on OpenStack\*</u> for additional information and definition.

## 5 Affirmed Networks\* vEPC Deployment on OpenStack\*

For optimal user-plane performance the Affirmed Networks\* vEPC required the RH OSP\* to be installed and Single-Root Input / Output Virtualization (SR-IOV) to be enabled on all the Data network NICs in the Compute nodes. In addition, NUMA, CPU Pinning, and Huge pages were configured on the Compute nodes.

This vEPC uses 4 VMs that have both internal and external networks. The VMs are the basic building blocks that provide the ability to perform vEPC functionality. The Affirmed Networks vEPC implementation includes adding appropriate flavors and deploying the following four types of virtual machines (VMs) on the compute nodes.

- Management Control Module (MCM) which controls Operations, Administration, and Management, CLI, etc.
- Content Service Module (CSM) a VM instance that runs the tasks needed for call control, IP routing and providing advanced services like video optimization, TCP Proxy, HTTP Proxy, etc.
- Subscriber Services Module (SSM) This type of VM is a User Plane VM, responsible for receiving packets into the MCC and sending the packets out and providing workflow services. We spawn two SSMs in the performance data shown in this document.

Table 5 lists the vEPC VM flavors and core allocations used for Intel® Xeon® Platinum 8280L servers.

| VM   | # OF VCPUS | RAM (GB) | ROOT DISK (GB) | COMPUTE NODE (CONTROL<br>PLANE + DATA PLANE) | NUMA NODE |
|------|------------|----------|----------------|----------------------------------------------|-----------|
| МСМ  | 16         | 32       | 112            | Compute Node 0                               | Socket 0  |
| CSM  | 16         | 128      | 50             | Compute Node 0                               | Socket 0  |
| SSM1 | 48         | 128      | 50             | Compute Node 1                               | Socket 0  |
| SSM2 | 48         | 128      | 50             | Compute Node 1                               | Socket 1  |

#### Table 5. Intel® Xeon® Platinum 8280L – Core Allocation for vEPC VMs

**Note:** Linux kernel optimizations as well as OpenStack Enhanced Platform Awareness (EPA) features in the VMs were used to optimize performance by using Intel hardware-specific platform technologies.

## 6 Performance Benchmarks

The Affirmed Networks vEPC solution driven by Intel<sup>®</sup> Xeon<sup>®</sup> Platinum 8280L servers delivered a network throughput of up to 168 Gbps and 29 Mpps. The test results in Table 6 are using UDP packets with two user plane VMs and default bearer sessions, with a packet size of 650 Bytes, one million sessions established, using a physical Spirent Landslide. A packet size of 650 Bytes is typically used for benchmarking, as it is the average of package sizes used in product deployment.

| KEY PERFORMANCE INDICATOR                        | INTEL® XEON® PLATINUM 8280L |
|--------------------------------------------------|-----------------------------|
| Packet Size                                      | 650 Bytes                   |
| Sessions Established                             | 1 Million                   |
| IO Throughput (Total Gigabits per second)        | 167.8 Gbps                  |
| IO Throughput (Total Million Packets per second) | 28.8 Mpps                   |
| Packet Loss                                      | ~0% (0.0005%)               |
| SSM Average Core Utilization - %                 | IO cores – 71%              |
|                                                  | HD cores - 86%              |

## 7 Summary

The Affirmed Networks\* vEPC Key Performance Indicators, with a million subscribers and a packet size of 650 Bytes with Red Hat\* OSP\* v10, one Spirent\* physical TAS VM, and two physical TS VMs, showed an impressive sustained and stable IO throughout, with low CPU utilization suitable for commercial deployments.

The high core count of the Intel<sup>®</sup> Xeon<sup>®</sup> Scalable processors, combined with architectural improvements, feature enhancements, and high memory bandwidth, is a tremendous performance and scalability advantage over previous Intel<sup>®</sup> Xeon<sup>®</sup> processor generations, especially in today's NFV environments.

Affirmed Networks and Intel have collaborated to bring together the best of both technologies accelerating time to deployment with deterministic behavior and transforming network technology with value-propositions for Communication Service Providers, including top-of-the-line performance, lower cost per bit, better ROI and as a future proof platform for 5G services.

## Appendix A BIOS Settings

Table 6 shows the Basic Input / Output System (BIOS) settings that were used to enable the best achieved performance on the SUT.

#### Table 6. BIOS Settings

| MENU (ADVANCED)              | PATH TO BIOS SETTING                                        | BIOS SETTINGS                            | DETERMINISTIC<br>PERFORMANCE |
|------------------------------|-------------------------------------------------------------|------------------------------------------|------------------------------|
|                              | Power and Performance                                       | CPU Power and Performance Policy         | Performance                  |
|                              | Power and Performance                                       | Workload Configuration                   | I/O Sensitive                |
|                              | Power and Performance →<br>CPU P-State Control              | Enhanced Intel® SpeedStep<br>Technology  | Enabled                      |
| Power Configuration          | Power and Performance →<br>Hardware P States                | Hardware P States                        | Disabled                     |
| i ower configuration         | Power and Performance →<br>CPU C State Control              | Package C-State                          | CO/C1 state                  |
|                              |                                                             | C1E                                      | Disabled                     |
|                              |                                                             | Processor C6                             | Disabled                     |
|                              | lla Dec Management                                          | Uncore Frequency Scaling                 | Disabled                     |
|                              | Uncore Power Management                                     | Performance P-limit                      | Disabled                     |
| Memory Configuration         | Advanced →<br>Memory Configuration                          | IMC Interleaving                         | 2-Way Interleaving           |
| Virtualization Configuration | Processor Virtualization<br>Feature                         | Intel® Virtualization<br>Technology (VT) | Enabled                      |
| virtualization Configuration | Integrated IO Virtualization<br>Configuration               | Intel® VT for Directed I/O               | Enabled                      |
| Thermal Configuration        | Advanced → System Acoustic and<br>Performance Configuration | Set Fan Profile                          | Performance                  |

**REQUIRED SETTING FOR** 



#### **Legal Information**

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Information in this document is provided in connection with Intel products. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Except as provided in Intel's terms and conditions of sale for such products, Intel assumes no liability whatsoever and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark\* and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to intel.com/benchmarks.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Performance results are based on testing as of March 25, 2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No component or product can be absolutely secure.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at Intel.com.

Intel<sup>®</sup> Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see <u>https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html</u>.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. Any differences in your system hardware, software or configuration may affect your actual performance.

Intel<sup>®</sup> Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and an HT Technology-enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.

Intel does not control or audit third-party web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel, the Intel logo, Xeon, and others are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

\* Other names and brands may be claimed as the property of others.